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Detector-scrambler transition and information avalanche

In a nutshell
A thought-experiment where we turn a knob and make a
measurement apparatus fail and become a “scrambler”:

+

The failure takes place as phase transitions.
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Detector-scrambler transition and information avalanche

Motivation

▶ Statistical physics + quantum “foundation” questions = ?
▶ This work: emergence of classical objectivity as a “phase of

information” where the latter propagates like a global
avalanche.

+
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Detector-scrambler transition and information avalanche
Motivation

The Heisenberg cut

An isolated system evolves
under the Schrödinger equation

|Ψ(t)⟩ = e−iHt|Ψ(0)⟩ (1)

It is deterministic and linear.

When a macroscopic apparatus
measures a quantum system, a
random outcome is observed,
accompanied by non-linear
state update, e.g.:

α| ↑⟩ + β| ↓⟩ −→{
| ↑⟩ w/ prob. |α|2

| ↓⟩ w/ prob. |β|2
(2)
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Motivation

Wigner’s friend scenario

Experimental evidence. Quantum theory remains successful in
describing larger and larger systems.
The thought-experiment. Wigner has full quantum control over
his friend’s lab (a spin and a measurement apparatus).
For Wigner, the measurement process is unitary:

(α| ↑⟩ + β| ↓⟩) ⊗ |app.⟩ → α

∣∣∣∣∣∣
〉

+ β

∣∣∣∣∣∣
〉

(3)

Quantum “ontology”. The account of reality depends on the
observer (or the H-cut).
Recent works: [Brukner], [Wiseman group], [Frauchiger-Renner], [Venkatesh],
[Polychronakos], [Rovelli] . . .
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Classical objectivity
For the friend, the measurement outcome is objective: It is
retrievable from multiple records (computer, notebook, . . . ) and
can be agreed upon by many observers.
Wigner can attest the emergence of objectivity — know that his
friend knows without knowing what she knows — by inspecting the
coherent dynamics:

α| ↑⟩ + β| ↓⟩ → α

∣∣∣∣∣∣
〉

+ β

∣∣∣∣∣∣
〉

, (4)

which is an “information avalanche”: the microscopic states | ↑⟩
and | ↓⟩ triggered distinct macroscopic responses of the lab. Many
parts of the lab become correlated with the input.
Quantum info. coaching of this statement: “Quantum Darwinism” by Zurek et al.
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Motivation

Classical objectivity vs Thermalisation
The “information avalanche” dynamics of the lab

α| ↑⟩ + β| ↓⟩ → α

∣∣∣∣∣∣
〉

+ β

∣∣∣∣∣∣
〉

(5)

is very different from the thermalising one of a generic interacting
quantum system:

α| ↑⟩ + β| ↓⟩ → α

∣∣∣∣∣∣
〉

1

+ β

∣∣∣∣∣∣
〉

2

(6)

The two states on the RHS are orthogonal but are locally
indistinguishable! The initial information is “scrambled” (also
called“encoded”).
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Motivation

This talk
▶ Mean-field models of a sharp transition between the two

behaviors.
▶ A “Harris criterion” to locate the transition in these models.

+

thermalisingdetector

Much can be illustrated in a simple classical model.
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Detector-scrambler transition and information avalanche
Toy model

Expansionist Chinese whispers (téléphone arabre)

▶ Start with an initial player with a secret message s = ±1.
▶ Every player repeats the message to 2 new players . . .
▶ but has probability p < 1

2 of hearing it wrong!

Can we infer the secret message (“input”) by inquiring the last
generation (“output”) players?
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Toy model

Full counting statistics
Consider the sum of the output messages/spins, M. Below is its
distribution conditioned on the secret message, Ps=± (t = 16):
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▶ p small: non-Gaussian distribution, can infer the input.
▶ p large: Gaussian distribution, cannot infer the input (better

than a random guess).
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Toy model

Phase diagram
We now compute the average amount of information that can be
inferred (mutual information/conditional entropy):
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The data indicates a transition at some pc where I vanishes.
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Some general theory

Next
▶ We are going to predict exactly pc, by deriving and applying a

“Harris” criterion, valid for all models (quantum and classical)
on an exponential expanding geometry.

▶ We will go from the specific model to a more general
framework and make connection with real-space
renormalization group (RG).

▶ This connection is well-known in the literature of tensor
networks (“MERA”, [Evenbly, G. Vidal, . . . ]), where the focus is
numerical study of quantum critical states. We use the
connection in a new and simpler way.
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Some general theory

Consider the time evolution of the observable m measuring the
local “spin”:

m(x, t + δt) = (1 − p)m(x′, t) + p(−m(x′, t)) (7)

By convention, set δt = ln 2 (so N = et). Then

m(x, t + δt) = e−∆δtm(x′, t) , ∆ = − ln(1 − 2p)/ ln(2) . (8)

We recognize a scaling operator (with dimension ∆), if we view
the dynamics as implementing a real space RG.
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Some general theory

Reminders on RG
▶ A scaling operator O∆ renormalizes simply when alone:

▶ OPE: If we evolve two (or more) of them, they will meet and
merge:

O∆(t, r)O∆′(t, r + eu) =
∑
∆′′

C∆′′
∆∆′e−u(∆+∆′−∆′′)O∆′′(t, r)
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Some general theory

General argument (simplified)
Let the input be in state |s⟩ (secret message). Can we infer it by
measuring

O(t) =
∫

O∆(t, r)ddr?

To find out, let us compare signal and noise:
▶ Signal: Mean value of O(t) conditioned on s

⟨O(t)⟩s = etde−∆t ⟨s|O∆(0)|s⟩ (9)

▶ Noise: Variance (assuming the OPE ∆∆ → 1 dominates)

〈
O(t)2

〉
∼ C1

∆∆etd
∫ t

u=0
e−2∆ueuddu (10)
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⟨O(t)⟩2
s ∼ e2tde−2∆t ,

〈
O(t)2

〉
∼ etd

∫ t

u=0
e−2∆ueuddu

▶ ∆ > d/2: u ∼ 0 dominates,

⟨O(t)⟩2
s ∼ e2(d−∆)t ≪

〈
O(t)2

〉
∼ edt

Signal ≪ noise: no information can be inferred.
Higher moments: show Gaussianity of O.

▶ ∆ < d/2: u ∼ t dominates,

⟨O(t)⟩2
s ∼

〈
O(t)2

〉
∼ e2(d−∆)t.

Signal ∼ noise, inference is possible. (Non-Gaussianity is
generically expected with interaction.)
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Some general theory

“Harris criterion”
An expanding dynamics can propagate a nonzero amount of the
input information if and only if there is a non-identity scaling
operator with scaling dimension

∆ < d/2 (11)

where d is the space dimension.
Remarks:
▶ Remains intact with spatial resolved probes.
▶ Resemblance to the Harris criterion (disordered perturbation), and

that of divergence of order parameter fluctuation.
▶ When ∆ < d/2, same amount of information can be retrieved by

inquiring any fixed small fraction f of the output, and thus
accessible by a large number of observers 1/f ≫ 1 (objectivity).
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Examples

Application to the téléphone arabre
Recall 2−∆ = (1 − 2p). Since we embedded the tree in d = 1,

∆c = 1
2 =⇒ 1 − 2pc = 1√

2
, pc = 2 −

√
2

4 = 0.1464 . . . . (12)
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Application: “téléphone arabre quantique”

The players now copy qubits in the computational basis.
Stochastic errors are replaced by a unitary rotation sending |0⟩ and
|1⟩ into coherent linear combinations thereof.
The criterion predicts exactly Jc = 1/2 (the dominating scaling
operator is σz).
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The more quantum transition

Aside: what’s genuinely quantum?
▶ To illustrate, consider again measuring the total spin M:
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m =M/σM
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m =M/σM
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▶ The best guess of the input qubit state, inferred from
outcome, can be pointing anywhere in the Bloch sphere, not
just the classical | ↑⟩, | ↓⟩.

▶ A proper discussion requires some quantum info setup. See
[PRL 2024, PRA 2024].
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The more quantum transition

A “purely quantum” transition

With fine-grained measure (but only accessing a small fraction of
the output), there is another transition at Jd < Jc where quantum
mutual information becomes maximal.
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More intricate (technically and physically), no known classical
counterpart. Exact solvable example: [PRL 2024], “theory”: [PRA 2024].
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Conclusion

Conclusion & Perspective

▶ Mean-field models & theory of
“detector-scrambler” transition.

▶ Emergence of objectivity =
“information avalanche” from
microscopic to macroscopic.

▶ Information aspects of avalanches
(“Can we learn about its seed?”)
will be relevant in more realistic
models.

▶ Complex-system expertise of our
GDR is needed for key quantum
foundation issues, e.g., “what is an
agent/observer?”

+

thermalisingdetector
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