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Detector-scrambler transition and information avalanche

In a nutshell

A thought-experiment where we turn a knob and make a
measurement apparatus fail and become a “scrambler”:

“"?w@
f
AT
+ o
P e
@.ﬂ,?w@
5 5

The failure takes place as phase transitions.
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Motivation

» Statistical physics + quantum “foundation” questions = 7

» This work: emergence of classical objectivity as a “phase of
information” where the latter propagates like a global

avalanche.
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- Motivation

The Heisenberg cut

An isolated system evolves
under the Schrédinger equation

[U(1)) = e w(0)) (1)

It is deterministic and linear.

When a macroscopic apparatus
measures a quantum system, a
random outcome is observed,
accompanied by non-linear
state update, e.g.:
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- Motivation

Wigner's friend scenario

Experimental evidence. Quantum theory remains successful in
describing larger and larger systems.

The thought-experiment. Wigner has full quantum control over
his friend’s lab (a spin and a measurement apparatus).

For Wigner, the measurement process is unitary:
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Quantum “ontology”. The account of reality depends on the
observer (or the H-cut).
Recent works: [Brukner], [Wiseman group], [Frauchiger-Renner], [Venkatesh],

[Polychronakos], [Rovelli] ...
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- Motivation

Classical objectivity

For the friend, the measurement outcome is objective: It is
retrievable from multiple records (computer, notebook, ...) and
can be agreed upon by many observers.

Wigner can attest the emergence of objectivity — know that his
friend knows without knowing what she knows — by inspecting the
coherent dynamics:
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which is an “information avalanche”: the microscopic states | 1)
and | |) triggered distinct macroscopic responses of the lab. Many
parts of the lab become correlated with the input.

Quantum info. coaching of this statement: “Quantum Darwinism” by Zurek et al.
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LMotivation

Classical objectivity vs Thermalisation

The “information avalanche” dynamics of the lab
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is very different from the thermalising one of a generic interacting
quantum system:
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The two states on the RHS are orthogonal but are locally
indistinguishable! The initial information is “scrambled” (also
called“encoded”).
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- Motivation

This talk

> Mean-field models of a sharp transition between the two
behaviors.

» A “Harris criterion” to locate the transition in these models.
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Much can be illustrated in a simple classical model.
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Expansionist Chinese whispers (téléphone arabre)

» Start with an initial player with a secret message s = +1.
P> Every player repeats the message to 2 new players ...
» but has probability p < % of hearing it wrong!
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Can we infer the secret message (“input”) by inquiring the last
generation (“output”) players?
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Full counting statistics

Consider the sum of the output messages/spins, M. Below is its
distribution conditioned on the secret message, Ps—1 (t = 16):
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» p small: non-Gaussian distribution, can infer the input.

» p large: Gaussian distribution, cannot infer the input (better
than a random guess).
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Phase diagram

We now compute the average amount of information that can be
inferred (mutual information/conditional entropy):

0.00 0.05 0.10 0.15 0.20 0.25 0.30

The data indicates a transition at some p. where I vanishes.
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- Some general theory

Next

> We are going to predict exactly p., by deriving and applying a
“Harris” criterion, valid for all models (quantum and classical)
on an exponential expanding geometry.

> We will go from the specific model to a more general
framework and make connection with real-space
renormalization group (RG).

» This connection is well-known in the literature of tensor
networks (“MERA", [Evenbly, G. Vidal, ...]), where the focus is
numerical study of quantum critical states. We use the
connection in a new and simpler way.
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Consider the time evolution of the observable m measuring the
local “spin”:

m(z,t 4+ dt)
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m(z,t+6t) = (1 - p)m(a’,t) + p(-m(a’, 1)) (7)
By convention, set §t = In2 (so N = e!). Then

m(xz,t+6t) = e 2m(a 1), A

—In(1—2p)/In(2).

We recognize a scaling operator (with dimension A), if we view
the dynamics as implementing a real space RG,

(8)
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L Some general theory

Reminders on RG
» A scaling operator O renormalizes simply when alone:
Oal(t) )

Y

» OPE: If we evolve two (or more) of them, they will meet and
merge:

OA (t, T)OA/ (t, T+ €u) = Z Cﬁgle_u(A+A,_A,/)OA// (t, ’I‘)
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= eiA(t*S)
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LSome general theory

General argument (simplified)

Let the input be in state |s) (secret message). Can we infer it by
measuring

ot) = / Oa(t,r)d%r?

To find out, let us compare signal and noise:

» Signal: Mean value of O(t) conditioned on s
(O(1)), = e'le™ > (5|0 (0)]5) (9)

> Noise: Variance (assuming the OPE AA — 1 dominates)
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<O(t)>§ ~ 621‘,d6—2At7

<O(t)2> ~ etd /to 672Aueuddu

» A > d/2: u~ 0 dominates,
(OW): ~ @ < (0(1)?) ~ e

Signal < noise: no information can be inferred.
Higher moments: show Gaussianity of O.
» A < d/2: u~t dominates,

(O(0)% ~ (O(1)?) ~ .

Signal ~ noise, inference is possible. (Non-Gaussianity is
generically expected with interaction.)



Detector-scrambler transition and information avalanche

- Some general theory

“Harris criterion”

An expanding dynamics can propagate a nonzero amount of the
input information if and only if there is a non-identity scaling
operator with scaling dimension

A< df2 (11)

where d is the space dimension.
Remarks:
» Remains intact with spatial resolved probes.

» Resemblance to the Harris criterion (disordered perturbation), and
that of divergence of order parameter fluctuation.

» When A < d/2, same amount of information can be retrieved by
inquiring any fixed small fraction f of the output, and thus
accessible by a large number of observers 1/f >> 1 (objectivity).
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L Examples

Application to the téléphone arabre
Recall 272 = (1 — 2p). Since we embedded the tree in d = 1,

2-v2

1
Ap== = 1-2p. =

5 =0.1464... . (12)
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L Examples

Application: “téléphone arabre quantique”

The players now copy qubits in the computational basis.
Stochastic errors are replaced by a unitary rotation sending |0) and
|1) into coherent linear combinations thereof.

The criterion predicts exactly J. = 1/2 (the dominating scaling
operator is 0%).

t =30t
t = 60t
— t=94t
— t =126t
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Aside: what's genuinely quantum?

» To illustrate, consider again measuring the total spin M:
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» The best guess of the input qubit state, inferred from
outcome, can be pointing anywhere in the Bloch sphere, not
just the classical | 1), | {).

» A proper discussion requires some quantum info setup. See
[PRL 2024, PRA 2024].
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LThe more quantum transition

A “purely quantum” transition

With fine-grained measure (but only accessing a small fraction of
the output), there is another transition at J; < J. where quantum
mutual information becomes maximal.
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More intricate (technically and physically), no known classical
counterpart. Exact solvable example: [PRL 2024], “theory”: [PRA 2024].
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Conclusion & Perspective

| 2

| 2

Mean-field models & theory of
“detector-scrambler” transition.

Emergence of objectivity =
“information avalanche” from
microscopic to macroscopic.

Information aspects of avalanches
(“Can we learn about its seed?")
will be relevant in more realistic
models.

Complex-system expertise of our
GDR is needed for key quantum
foundation issues, e.g., “what is an
agent/observer?”
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