

Criticality and predictability of scale invariant avalanches

K. Duplat, F. Detcheverry and O. Ramos

INSTITUT

LUMIÈRE MATIÈRE

Scale invariant dynamic

Scale invariant phenomenon: Phenomenon with no characteristic size for an event.

OFC Model

Exponent variation with the dissipation

3

Olami - Feder - Christensen model[1992]

Burridge et Knopoff model [1967]

Cellular automaton (OFC)

Th (x,y)

1D example

Initial state : sites are initialized at random values between 0 and 1

1D example

Energy incrementation in the entire system by the smallest deviation to the threshold

1D example

The most unstable site reaches its threshold and topple

1D example

Redistribution of its energy to its neighbors

1D example

The process continues...

1D example

The process continues...

1D example

... until the system reaches a new stable state

1D example

Avalanche : process starting from the toppling of the first site and ending when a new stable state is reached

Avalanche size (s) : Number of sites that toppled

Dissipation : Energy lost during the toppling of a site

Only 50% of the force will be distributed

The process continues...

Introduction to the dissipation

v = 0.5

V

... until the system reaches a new stable state

Introduction to the disorder

Threshold distribution follow a gaussian around 1

Redistribution of its energy to its neighbors

Open boundary conditions : energy given to the virtual neighbour is lost.

Plan

- Algorithm optimisation
- Dissipation influence on the size distribution
- Temporal correlation between avalanches ?
- Spatial correlation in the system ?
- Robustness with the disorder?

Plan

- Algorithm optimisation
- Dissipation influence on the size distribution
- Temporal correlation between avalanches ?
- Spatial correlation in the system ?
- Robustness with the disorder?

Algorithm optimisation

A new method to find the next center of the avalanche: Heap structure

Algorithm optimisation

A new method to find the next center of the avalanche: Heap structure

A box to avoid sweeping the entire system to propagate the avalanche

Algorithm optimisation

A new method to find the next center of the avalanche: Heap structure

A box to avoid sweeping the entire system to propagate the avalanche

Performances

v = 12%, 10⁷ avalanches

Naive algorithm : O(N) Optimized algorithm: O(ln(N))

New Plan

- Algorithm optimisation
- Dissipation influence on the size distribution
- Temporal correlation between avalanches ?
- Spatial correlation in the system ?
- Robustness with the disorder?

Results: Avalanche size distribution

Results: Avalanche size distribution

A robuste exponent with the system size

29

Two regimes : very low dissipation, high dissipation

30

Zoom at very low dissipation

How to try to understand the continuous variation of the exponent as function of the dissipation?

Plan

- Algorithm optimisation
- Dissipation influence on the size distribution
- Temporal correlation between avalanches ?
- Spatial correlation in the system ?
- Robustness with the disorder?

33

Is there a temporal correlation?

Plan

- Algorithm optimisation
- Dissipation influence on the size distribution
- Temporal correlation between avalanches ?
- Spatial correlation in the system ?
- Robustness with the disorder ?

Transient regime

Time

Patches spreading from the border of the system to its center

Boundary conditions

Hypotheses:

- No spatial correlation in the conservative case
- Structure appearing with the dissipation

v = 0%

v = 40%

Correlation function on the length of the system:

$$C_x(y) = \frac{\langle h_x h_{x,y} \rangle - \langle h_x \rangle^2}{\langle h_x^2 \rangle - \langle h_x \rangle^2}$$

Plan

- Algorithm optimisation
- Dissipation influence on the size distribution
- Temporal correlation between avalanches ?
- Spatial correlation in the system ?
- Robustness with the disorder ?

Panorama

v, dissipation

Panorama

Conservative case : Robuste exponent with the disorder

Panorama

Conservative case : Robuste exponent with the disorder

Panorama

The dissipation change the exponent

Panorama

Disorder destroys the power law

46

Disorder on the size distribution

Continuous variation of the exposant au with the dissipation

Temporal correlation

Memory loss with disorder

Memory is only present when there is no disorder in the thresholds

Spatiale correlation

Patch disappearance

Disorder destroy the patches

Conclusion

- Disorder has different impact on τ , γ and ξ .
- Different regions observed depending of τ , γ and ξ .
- Robust evolution of τ at low dissipation with the disorder.
- Two regimes in the size distribution with the dissipation

Thank you for your attention!