

Stokes flow experiment in biological tissues: comparison with an active abiotic system

Helene Delanoë-Ayari (Université de Lyon, France)

Outline

- Motivations
- 2D cellular systems
- 3D cellular systems
- Active colloids
- Conclusion and perspectives

Biological motivations:

Morphogenesis= morphe (shape) + genesis (creation)

Developing embryo

 $25 \mu m$

Adult drosophila

B. Sanson, University of Cambridge

Questions for a physicist:

What are the tissue mechanical properties?

- How does a tissue respond to an impose force?
- Respective intercellular and intracellular contributions to tissues mechanical properties?
- Differences with a passive cellular material like a foam?
- Differences with active particles?

Underlying question: what is the best way of Modeling Tissues?

e Continuum mechanics

-) Solid mechanics (elastic & plastic)
-) Visco-elastic materials
-) Fluid mechanics

e Discrete Tissue Models

-) Subcellular elements
-) Cellular elements
-) Coarse-grained discrete models

Cell-based Modelling

Tanaka, Simulation Frameworks for Morphogenetic Problems, MDPI Computation, 2015

> Centroid based model (ex: Viszek) versus Contour based models (ex: Vertex)? Beatrici et al., Soft Matter 2023

Outline

- Motivations
- 2D cellular systems
- 3D cellular systems
- Active colloids
- Conclusion and perspectives

The stokes' Experiment: methodology from foams

+Bidimensionnal foam

+Heteregeous flow in:

- velocity
- deformation
- gradient of velocity

B.Dollet, F. Graner

Individual cell deformation versus cell rearrangements

The actors :

Sham Tlili **Melina Durande** François Graner

MDCK: (**Madin**-**Darby Canine Kidney) epithelial tissue**

Cell monolayers

One cell thick layer

Cells adhere : to the substrate to each other

 $1000 \mu m$

 $50 \mu \mathrm{m}$

Making cell monolayers collectively migrate

PDMS +

Fibronectin pattern

Non adhesive part

=chemical obstacle

Now the Stokes experiment

The idea…

Measuring average local cell anisotropy and size using FFT

Durande, M., Tlili, S., Homan, T., Guirao, B., Graner, F., & Delanoë-Ayari, H. (2019). Fast determination of coarse-grained cell anisotropy and size in epithelial tissue images using Fourier transform. *Physical Review E*, *99*(6), 062401.

Image analysis: Tensors calculation

MDCK cell monolayers=Maxwell liquid

• Green/blue: ε

What about activity?

Blebbistatin: kill myosin II activity

This would be coherent with recent works showing that activity is at The origin of a shear-thining property of the tissue.

Oriola, D., Alert, R., & Casademunt, J. (2017). Fluidization and Active Thinning by Molecular Kinetics in Active Gels. *Physical Review Letters*, *118*(8), 1–6.

Other questions and measurements:

Influence boundary conditions Measure forces and stresses

Racetrack: no free front

Flows and standing waves

Outline

- Motivations
-
- 3D cellular systems
- Active colloids
- Conclusion and perspectives

Very same idea in 3D experiments in a constriction (no motility)

Tlili S, Graner F, Delanoë-Ayari H. **A microfluidic platform to investigate the role of mechanical constraints on tissue reorganization.** *To appear in Development 2022.*

Same idea with a Lagrangian approach

Output: $\tau_{viscoelastic}$

Same tools for Quantification as in 2D

Velocity field

Cell shape

Kanade-Lucas-Tomasi Fourier, segmentation

Microscopic Events, microscopic relaxation times

Fast aspiration

Relaxation after slow aspiration

Relaxation after a long aspiration T_{aspi} >> τ_r

Extract typical mechanical parameters

- + Description as a passive material,
- + What is specific to tissue and to activity?
- + Difference between cells and particles?

Perspectives : for more quantitative analysis

+ On the experimental Side: Segmentation using deep learning

+ modeling: Finite Element Modelling of tissues Collaboration N. Shourick, M.Renard P. Saramito, I. Cheddadi

Oldroyd Model of viscoelastic fluid, With FENE models (Finitely Extensible Non-Linear Elastic)

Experiments **Experiments** Simulations

Active abiotic system : Colloïds

Cécile Cottin-Bizonne Mathieu Leocmach PhD student

Guillaume Duprez,

Our active system: active colloids

How to make dense assemblies?

Volume fraction

Equation of states for a gaz of hard sphere (blue gaz, orange liquid)

Fit of the blue part, gives access to an effective Temperature And so to a quantification of activity

Probing the microrheology

- 10 um obstacle : glass rod approach with the micromanipulator
- Movement : induced by the motorized stage on the whole sediment

iLM It's better to see it!

iLM Two different points of view

Coordinates in obstacle size units.

Our observables: Velocity field, Density **Our referential:** Fluid

i LM First observations: Flow field of passive colloids

Observations :

- Heterogeneity
- Block movements
- Fluctuating

Yield stress fluid behaviour?

Velocity fields averaged over 4 s. Fluid referential

i LM Mean flow field of passive colloids

Observations :

- Smoother
- **Recirculation**

Mean streamlines for passive colloids

Theoretical Newtonian fluid No slip and infinite fluid

Experimental passive colloids

• **Non Newtonian? Boundary conditions?** • **Asymmetries?**

iLM Asymmetry top/bottom

Imposed by the sediment

Front/back asymmetry in velocity

I. Cheddadi *et al.* Eur. Phys. J. E 2011

Asymmetry in the velocity profile:

characteristic of a visco-elasto-plastic fluid

iLM Comparison to foams

Streamline of the colloids The Streamline in foam

(up model prediction/down data)

I. Cheddadi PhD 2010

Also observed with carbopol (D. Fraggedakis *et al.* Soft Matter 2016)

ILM Front/back asymmetry in density

Compressible flow of the colloids

iLM Particle Based Models

$$
\dot{\mathbf{r}}_i = v_0 \mathbf{u}(\theta_i) + \mu \sum_{jV_i} \mathbf{F}_{ji} + \sqrt{2D_t} \boldsymbol{\eta}_i + f_g \mathbf{e}_y + \mathbf{f}_s(\mathbf{R}(t))
$$

$$
\dot{\theta} = \sqrt{2D_r} \xi \qquad \qquad V(r) = \begin{cases} 4\varepsilon \left[\left(\frac{a}{r}\right)^{12} - \left(\frac{a}{r}\right)^6 \right] & \text{if} \quad r < r_0 \\ 0 & \text{if} \quad r \ge r_0 \end{cases}
$$

Simulation G Spera, F. Graner

Conclusion and Perspectives:

• Experiments leads to very rich and discriminative outputs

Passive colloids Cells – S. Tlili PhD 2015

- **Qualitatively similar, quantitatively?**
- **Role of activity?**

A clear need of thorough comparisons with simulations. Which ones?

Biophysics Team : https://tinyurl.com/BiophysicsULyon

Thanks a lot to Sham Tlili, Melina Durande and Guillaume Duprez, G. Spera, N. Shourick, M. Renard And to my colleagues: F. Graner, P. Saramito, I. Cheddadi

Thanks for your attention!