

Stokes flow experiment in biological tissues: comparison with an active abiotic system

Helene Delanoë-Ayari (Université de Lyon, France)

Outline

- Motivations
- 2D cellular systems
- 3D cellular systems
- Active colloids
- Conclusion and perspectives

Biological motivations:

Morphogenesis= morphe (shape) + genesis (creation)

Fertilized egg

Developingembryo

25 µm

Adult drosophila

B. Sanson, University of Cambridge

Questions for a physicist:

What are the tissue mechanical properties?

- How does a tissue respond to an impose force?
- Respective intercellular and intracellular contributions to tissues mechanical properties?
- Differences with a passive cellular material like a foam?
- Differences with active particles?

Underlying question: what is the best way of Modeling Tissues?

e Continuum mechanics

- Solid mechanics (elastic & plastic)
- Visco-elastic materials
-) Fluid mechanics

Discrete Tissue Models

-) Subcellular elements
-) Cellular elements
-) Coarse-grained discrete models

Cell-based Modelling

Tanaka, Simulation Frameworks for Morphogenetic Problems, MDPI Computation, 2015

Centroid based model (ex: Viszek) versus Contour based models (ex: Vertex)? Beatrici et al., Soft Matter 2023

Outline

- Motivations
- 2D cellular systems
- 3D cellular systems
- Active colloids
- Conclusion and perspectives

The stokes' Experiment: methodology from foams

+Bidimensionnal foam

+Heteregeous flow in:

- velocity
- deformation
- gradient of velocity

B.Dollet, F. Graner

Individual cell deformation versus cell rearrangements

The actors :

Sham Tlili

Melina Durande

François Graner

MDCK: (Madin-Darby Canine Kidney) epithelial tissue

Cell monolayers

One cell thick layer

Cells adhere : to the substrate to each other

 $1000 \mu m$

 $50 \mu m$

Making cell monolayers collectively migrate

PDMS +

Fibronectin pattern

Non adhesive part

=chemical obstacle

Now the Stokes experiment

The idea...

Measuring average local cell anisotropy and size using FFT

Durande, M., Tlili, S., Homan, T., Guirao, B., Graner, F., & Delanoë-Ayari, H. (2019). Fast determination of coarse-grained cell anisotropy and size in epithelial tissue images using Fourier transform. *Physical Review E*, *99*(6), 062401.

Image analysis: Tensors calculation

MDCK cell monolayers=Maxwell liquid

- Green/blue: *ɛ* ٠

What about activity?

Blebbistatin: kill myosin II activity

This would be coherent with recent works showing that activity is at The origin of a shear-thining property of the tissue.

Oriola, D., Alert, R., & Casademunt, J. (2017). Fluidization and Active Thinning by Molecular Kinetics in Active Gels. *Physical Review Letters*, *118*(8), 1–6.

Other questions and measurements:

Influence boundary conditions

Racetrack: no free front

Flows and standing waves

Measure forces and stresses

Outline

- Motivations
- 2D cellular systems
- 3D cellular systems
- Active colloids
- Conclusion and perspectives

Very same idea in 3D experiments in a constriction (no motility)

Tlili S, Graner F, Delanoë-Ayari H. A microfluidic platform to investigate the role of mechanical constraints on tissue reorganization. *To appear in Development 2022.*

Same idea with a Lagrangian approach

Output: $\tau_{viscoelastic}$

Same tools for Quantification as in 2D

Velocity field

Cell shape

Kanade-Lucas-Tomasi

Fourier, segmentation

Microscopic Events, microscopic relaxation times

Fast aspiration

Relaxation after slow aspiration

Relaxation after a long aspiration $T_{aspi} >> \tau_r$

Extract typical mechanical parameters

quantity	symbol	value
cell group scale visco-elastic relaxation time	$ au_r$	10^3 s
cell group scale viscosity	η_r	10 ⁵ Pa.s
elastic modulus	G	10^2 Pa
cell scale visco-elastic relaxation time	$\tau_{\rm cell}$	10^2 s
cell scale viscosity	η_{cell}	10 ⁴ Pa.s
aggregate scale capillary modulus	(Γ/R)	10 ² Pa

- + Description as a passive material,
- + What is specific to tissue and to activity?
- + Difference between cells and particles?

Perspectives : for more quantitative analysis

+ On the experimental Side: Segmentation using deep learning

+ modeling: Finite Element Modelling of tissues Collaboration N. Shourick, M.Renard P. Saramito, I. Cheddadi

Oldroyd Model of viscoelastic fluid, With FENE models (Finitely Extensible Non-Linear Elastic)

Experiments

Simulations

Active abiotic system : Colloïds

Cécile Cottin-Bizonne

Mathieu Leocmach

Guillaume Duprez, PhD student

iLM Our active system: active colloids

Trajectories of active colloids

iLM How to make dense assemblies?

Volume fraction

Equation of states for a gaz of hard sphere (blue gaz, orange liquid)

Fit of the blue part, gives access to an effective Temperature And so to a quantification of activity

iLM Probing the microrheology

- 10 µm obstacle : glass rod approach with the micromanipulator
- Movement : induced by the motorized stage on the whole sediment

ILM It's better to see it !

ILM Two different points of view

Coordinates in obstacle size units.

Our observables: Velocity field, Density Our referential: Fluid

ILM First observations: Flow field of passive colloids

Observations:

- Heterogeneity
- Block movements
- Fluctuating

Yield stress fluid behaviour?

Velocity fields averaged over 4 s. Fluid referential

iLM Mean flow field of passive colloids

Observations :

- Smoother
- Recirculation

iLM Mean streamlines for passive colloids

Theoretical Newtonian fluid No slip and infinite fluid Experimental passive colloids

Non Newtonian? Boundary conditions?
Asymmetries?

iLM Asymmetry top/bottom

Imposed by the sediment

Front/back asymmetry in velocity

I. Cheddadi et al. Eur. Phys. J. E 2011

Asymmetry in the velocity profile:

characteristic of a visco-elasto-plastic fluid

iLM Comparison to foams

Streamline of the colloids

Streamline in foam

(up model prediction/down data)

I. Cheddadi PhD 2010

Also observed with carbopol (D. Fraggedakis et al. Soft Matter 2016)

Front/back asymmetry in density

Compressible flow of the colloids

Healing behind the obstacle

Particle Based Models

$$\begin{split} \dot{\mathbf{r}}_{i} &= v_{0} \mathbf{u}(\theta_{i}) + \mu \sum_{j V i} \mathbf{F}_{ji} + \sqrt{2D_{t}} \boldsymbol{\eta}_{i} + f_{g} \mathbf{e}_{y} + \mathbf{f}_{s}(\mathbf{R}(t)) \\ \dot{\theta} &= \sqrt{2D_{r}} \xi \qquad \qquad V(r) = \begin{cases} 4\varepsilon \left[\left(\frac{a}{r}\right)^{12} - \left(\frac{a}{r}\right)^{6} \right] & \text{if} \quad r < r_{0} \\ 0 & \text{if} \quad r \ge r_{0} \end{cases} \end{split}$$

Simulation G Spera, F. Graner

Conclusion and Perspectives:

• Experiments leads to very rich and discriminative outputs

Passive colloids

Cells – S. Tlili PhD 2015

- Qualitatively similar, quantitatively?
- Role of activity?

A clear need of thorough comparisons with simulations. Which ones?

Biophysics Team : https://tinyurl.com/BiophysicsULyon

Thanks a lot to Sham Tlili, Melina Durande and Guillaume Duprez, G. Spera, N. Shourick, M. Renard And to my colleagues: F. Graner, P. Saramito, I. Cheddadi

Thanks for your attention!