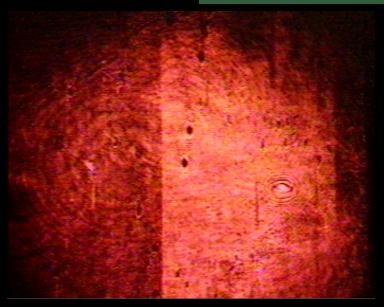
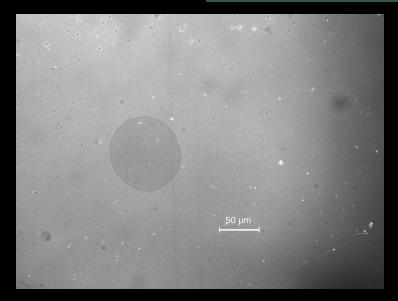
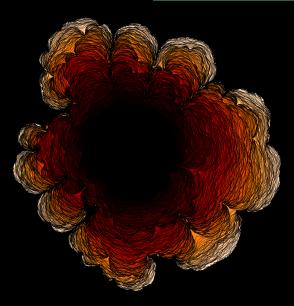
Earthquake-like dynamics of magnetic domain walls in ultrathin films

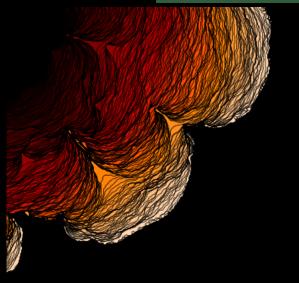
G. Durin¹, V. M. Schimmenti^{2,3}, M. Baiesi⁴, A. Casiraghi¹,
A. Magni¹, L. Herrera-Diez⁵, D. Ravelosona⁵,
L. Foini⁶, A. Rosso²


¹Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, Italy
 ²LPTMS, CNRS, Université Paris-Saclay, Université Paris, France
 ³LISN, TAU team,Gif-sur-Yvette,91190, France
 ⁴Dep.of Physics and Astronomy and INFN, Via Marzolo 8, Padova, 35131, Italy
 ⁵Centre for Nanoscience and Nanotechnology (C2N), CNRS, Paris, France
 ⁶Inst. de Physique Théorique, Univ. Paris-Saclay, CNRS, Gif-sur-Yvette, France

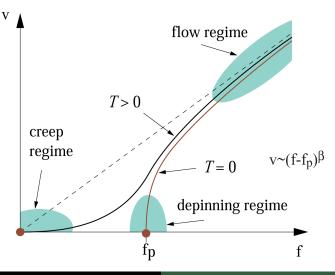
GDR@Grenoble - June 19, 2024


Experiments Results and discussion


Experiments Results and discussion


Experiments Results and discussion

Experiments Results and discussion



Experiments Results and discussion

Creep and depinning Universality Spatiotemporal patterns

Different regimes in creep and depinning

Creep and depinning Universality Spatiotemporal patterns

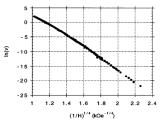
Lemerle et al, 1998: early experiments

VOLUME 80, NUMBER 4

PHYSICAL REVIEW LETTERS

26 JANUARY 1998

Domain Wall Creep in an Ising Ultrathin Magnetic Film


S. Lemerle,¹ J. Ferré,¹ C. Chappert,² V. Mathet,² T. Giamarchi,¹ and P. Le Doussal³ ¹Laboratoire de Physique des Solides, URA CNRS 02, Bâtiment 510, Université Paris-Sud, 91405 Orsay, France ²Institut d'Electronique Fondamentale, URA CNRS 022, Bâtiment 220, Université Paris-Sud, 91405 Orsay, France ³CNRS-LPTENS, 24 Rue Linomod, 75230 Paris Cedex 05, France

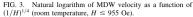

Experiments on PMA Pt/Co/Pt

FIG. 1. Typical magneto-optical image (size $90 \times 72 \ \mu m^2$, $\lambda = 638.1 \ nm$). The gray part corresponds to the surface swept by the domain wall during 111 μ s at 460 Oe ($T = 23 \ ^{\circ}$ C). The dark part is the original domain.

The famous $v \sim exp(-H^{-1/4})$

Creep and depinning Universality Spatiotemporal patterns

Lemerle et al, 1998: early experiments

VOLUME 80, NUMBER 4

PHYSICAL REVIEW LETTERS

26 JANUARY 1998

Domain Wall Creep in an Ising Ultrathin Magnetic Film

S. Lemerle,¹ J. Ferré,¹ C. Chappert,² V. Mathet,² T. Giamarchi,¹ and P. Le Doussal³ ¹Laboratoire de Physique des Solides, URA CNRS 02, Bâtiment 510, Université Paris-Sud, 91405 Orsay, France ²Institut d'Electronique Fondamentale, URA CNRS 022, Bâtiment 220, Université Paris-Sud, 91405 Orsay, France ³CNRS-LPTENS, 24 Rue Linomod, 75230 Paris Cedex 05, France

Experiments on PMA Pt/Co/Pt

FIG. 1. Typical magneto-optical image (size 90 × 72 μ m², $\lambda = 638.1$ nm). The gray part corresponds to the surface swept by the domain wall during 111 μ s at 460 Oe (T = 23 °C). The dark part is the original domain.

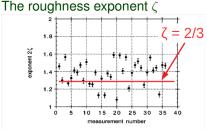
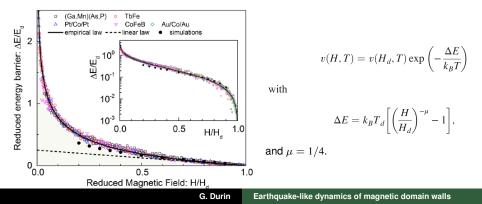


FIG. 5. Wandering exponent 2ζ . Measurements on different MDW driven at H = 50 Oe during 20–45 min and then frozen $(T = 300 \text{ K}, \text{ estimated error on } 2\zeta \text{ for a given image: } \pm 0.03).$

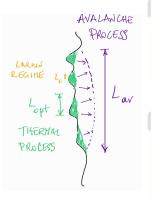
Creep and depinning Universality Spatiotemporal patterns

Jeudy et al, 2016: Universal description


PRL 117, 057201 (2016)

PHYSICAL REVIEW LETTERS

29 JULY 2016

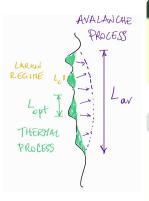

Universal Pinning Energy Barrier for Driven Domain Walls in Thin Ferromagnetic Films

V. Jeudy,^{1,1} A. Mougin,¹ S. Bustingorry,² W. Savero Torres,¹ J. Gorchon,¹ A. B. Kolton,² A. Lemaître,³ and J.-P. Jamet^{1,*} ¹Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Sacley, 91405 Orsay Cedex, France ²CONICET, Centro Atómico Bariloche, 8400 San Carlos de Bariloche, Rio Negro, Argentina ³Laboratoire de Photonique et de Nanostructures, CNRS, Université Paris-Sacley, 91406 Marcoussis, France

Creep and depinning Universality Spatiotemporal patterns

What is the real nature of creep dynamics?

⁼irst scenario


- A single *L*_{opt} exists
 - Below L_{opt}, pure thermal motion occurs
- Back-forth motion over *equilibrium* barriers

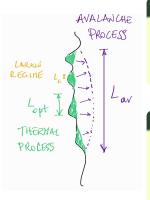
Second scenario

- Forward motion over *L*_{opt} up to *L*_{av}
- *L_{opt}* acts as a mainshock as in EQ
- Reorganization should show *depinning* critical exponents

Creep and depinning Universality Spatiotemporal patterns

What is the real nature of creep dynamics?

First scenario


- A single *L*_{opt} exists
- Below L_{opt}, pure thermal motion occurs
- Back-forth motion over *equilibrium* barriers

Second scenario

- Forward motion over *L*_{opt} up to *L*_{av}
- L_{opt} acts as a mainshock as in EQ
- Reorganization should show *depinning* critical exponents

Creep and depinning Universality Spatiotemporal patterns

What is the real nature of creep dynamics?

First scenario

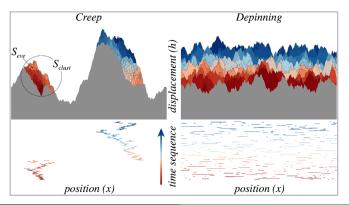
- A single *L*_{opt} exists
- Below Lopt, pure thermal motion occurs
- Back-forth motion over *equilibrium* barriers

Second scenario

- Forward motion over *L*_{opt} up to *L*_{av}
- L_{opt} acts as a mainshock as in EQ
- Reorganization should show depinning critical exponents

Creep and depinning Universality Spatiotemporal patterns

E. Ferrero et al., 2017: Spatiotemporal patterns


PRL 118, 147208 (2017)

PHYSICAL REVIEW LETTERS

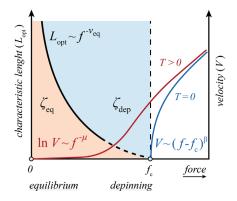
week ending 7 APRIL 2017

Spatiotemporal Patterns in Ultraslow Domain Wall Creep Dynamics

Ezequiel E. Ferrero,^{1,*} Laura Foini,² Thierry Giamarchi,² Alejandro B. Kolton,³ and Alberto Rosso⁴

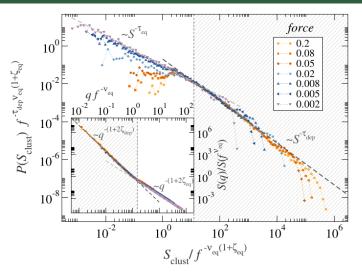
Creep and depinning Universality Spatiotemporal patterns

E. Ferrero et al., 2017: Spatiotemporal patterns


PRL 118, 147208 (2017)

PHYSICAL REVIEW LETTERS

week ending 7 APRIL 2017


Spatiotemporal Patterns in Ultraslow Domain Wall Creep Dynamics

Ezequiel E. Ferrero,^{1,*} Laura Foini,² Thierry Giamarchi,² Alejandro B. Kolton,³ and Alberto Rosso⁴

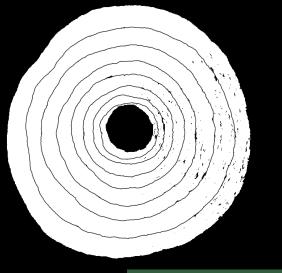
Creep and depinning Universality Spatiotemporal patterns

E. Ferrero et al., 2017: Spatiotemporal patterns

FeCoB/MgO film Detection of creep dynamics Correlations and clusters

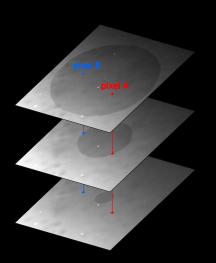
The Samples: FeCoB/MgO films

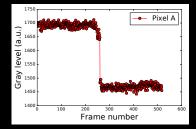
Stack: $Si/SiO_2/Ta(5nm)/Co_{20}Fe_{60}B_{20}(1nm)/MgO(2nm)/Ta(3nm)$

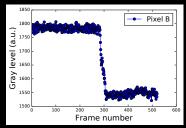

Ta (3 nm) MgO (2 nm) Co₂₀Fe₆₀B₂₀ (1 nm) Ta (5 nm) Si/SiO₂

- Films annealed at 300°C
- High Perpendicular Magnetic Anisotropy
- $H_c \sim 10 \ mT$
- Constant acquisition rate: 5 frames/s
- Pixel size: ~ 0.3 μm
- $v \sim 40 \div 160 \ \mu m/s$

Field (mT)	$H/H_c(\%)$	Sets
0.13	1.25	14
0.14	1.35	8
0.15	1.44	4
0.16	1.54	4


FeCoB/MgO film Detection of creep dynamics Correlations and clusters


Creep motion: a sequence of measurements (8 sets)



FeCoB/MgO film Detection of creep dynamics Correlations and clusters

Creep motion: how to determine the DW position

G. Durin

Creep of domain walls FeCoB/MgO film Experiments Detection of creep dynamics Results and discussion Correlations and clusters

How large is the optimal Length *L*_{opt}?

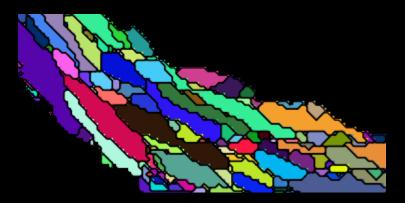
From Kim et al., Nature 458, 740 (2009)

$$L_{opt} = L_c \left[\frac{u_c \mu}{2\zeta(\mu+1)} \right]^{(2+\mu)/3} \left(\frac{H_{dep}}{H} \right)^{(2+\mu)/3}$$

where $L_c = \sqrt{rac{\sigma \zeta}{M_s H_{dep}}} \sim 100 nm$

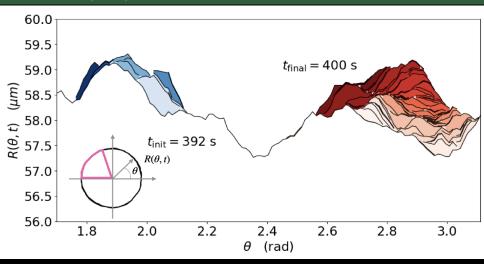
 \Rightarrow *L*_{opt} ~ 380 - 400 *nm* (similar to CoPt)

L_{opt} is of the order / smaller than the pixel size

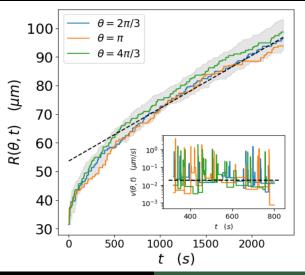

FeCoB/MgO film Detection of creep dynamics Correlations and clusters

Clustering of pixel-scale events

FeCoB/MgO film Detection of creep dynamics Correlations and clusters

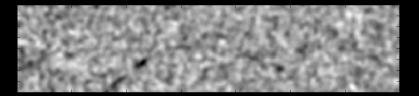

Clustering of pixel-scale events

Creep of domain walls FeCo Experiments Deter Results and discussion Corre


FeCoB/MgO film Detection of creep dynamics Correlations and clusters

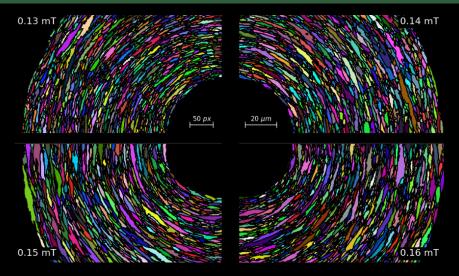
Clustering of pixel-scale events

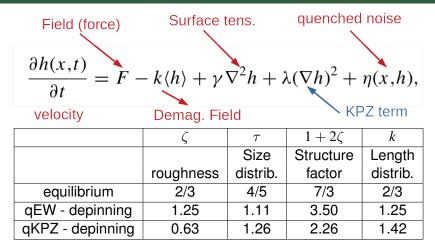
FeCoB/MgO film Detection of creep dynamics Correlations and clusters


Clustering of pixel-scale events

G. Durin

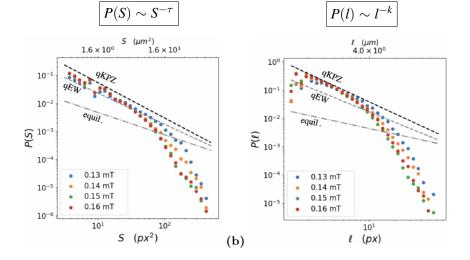
FeCoB/MgO film Detection of creep dynamics Correlations and clusters


Clusters of correlated events

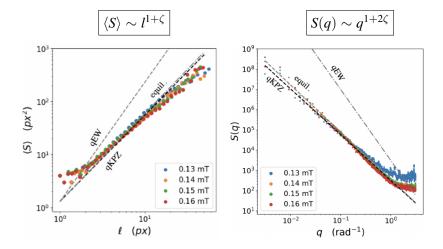

FeCoB/MgO film Detection of creep dynamics Correlations and clusters

Clusters of correlated events

Size distribution, *S*(*q*), and roughness A qKPZ realization in experiment DW velocity, and DMI

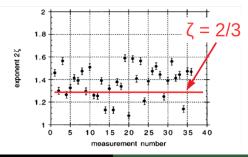

Critical exponents of qEW and qKPZ classes

Clusters should follow the depinning exponents!

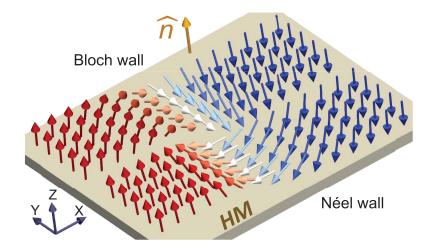

Size distribution, *S*(*q*), and roughness A qKPZ realization in experiment DW velocity, and DMI

Cluster size and longitudinal length distributions

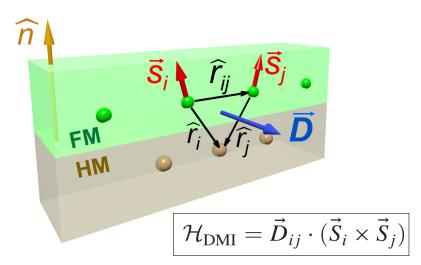
Size distribution, *S*(*q*), and roughness A qKPZ realization in experiment DW velocity, and DMI


Roughness and structure factor

Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI


Universality class: a qKPZ example

	ζ	τ	$1+2\zeta$	k
		Size	Structure	Length
	roughness	distrib.	factor	distrib.
equilibrium	2/3	4/5	7/3	2/3
qEW - depinning	1.25	1.11	3.50	1.25
qKPZ - depinning	0.63	1.26	2.26	1.42


Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI

The interfacial Dzyaloshinskii-Moriya Interaction (DMI)

Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI

The interfacial Dzyaloshinskii-Moriya Interaction (DMI)

Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI

The interfacial Dzyaloshinskii-Moriya Interaction (DMI)

REVIEWS OF MODERN PHYSICS, VOLUME 95, JANUARY-MARCH 2023

Measuring interfacial Dzyaloshinskii-Moriya interaction in ultrathin magnetic films

M. Kuepferling, A. Casiraghi, G. Soares, and G. Durin stituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino, Italy

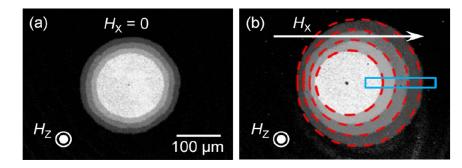
F. Garcia-Sanchezo

Departamento de Fisica Aplicada, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain

L. Cheno⁺ and C. H. Backo⁺ Technical University Munich, James-Frank-Straße 1, 85748 Garching, Germany

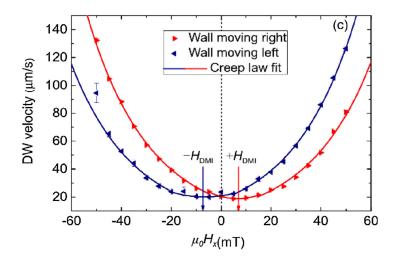
C. H. Marrows School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kinadom

S. Tacchio


CNR, Istituto Officina dei Materiali-Perugia, c/o Dipartimento di Fisica e Geologia, Universitá di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy

G. Carlottio

Dipartimento di Fisica e Geologia, Universitá di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy

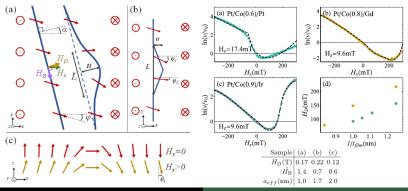

Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI

The interfacial Dzyaloshinskii-Moriya Interaction (DMI)

Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI

The interfacial Dzyaloshinskii-Moriya Interaction (DMI)

Creep of domain walls Experiments A qKPZ re Results and discussion DW veloci


Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI

Refined calculus of velocity for chiral domain walls?

PHYSICAL REVIEW B 100, 094417 (2019)

Creep of chiral domain walls

Dion M. F. Hartmann O.^{1,*} Rembert A. Duine,^{1,2} Mariëlle J. Meijer,² Henk J. M. Swagten,² and Reinoud Lavrijsen² ¹Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht, The Netherlands ²Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

G. Durin

Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI

Final remarks

- Creep is NOT an equilibrium process (on large scales)
- The system is not moving between equilibrium states (as believed), but follows a correlated dynamics similar to seismic swarm of earthquakes!
- Why qKPZ?
- Creep with DMI, and chiral domain walls?

Thank you very muh for your attention!

Size distribution, S(q), and roughness A qKPZ realization in experiment DW velocity, and DMI

Final remarks

- Creep is NOT an equilibrium process (on large scales)
- The system is not moving between equilibrium states (as believed), but follows a correlated dynamics similar to seismic swarm of earthquakes!
- Why qKPZ?
- Creep with DMI, and chiral domain walls?

Thank you very muh for your attention!