

Meeting GDR "Interaction, Désordre, Elasticité" (Grenoble) 17-21 June 2024

Surface criticality in disorder-driven quantum transitions and beyond

Andrei Fedorenko

CNRS Laboratoire de Physique École Normale Supérieure de Lyon, France

David Carpentier ENS de Lyon

Eric Brillaux ENS de Lyon

Ivan Balog Institute of Physics Zagreb, Croatia

Ilya Gruzberg Ohio State University USA

Outline

- Theory of surface critical phenomena
- Bragg glass in XY model and disordered periodic elastic systems
- Anderson localization
- Non-Anderson disorder-driven quantum transition in Dirac materials

Outline

- Theory of surface critical phenomena
- Bragg glass in XY model and disordered periodic elastic systems
- Anderson localization
- Non-Anderson disorder-driven quantum transition in Dirac materials

Theory of surface critical phenomena

3D Ising model in a semi-infinite space

 $H=-\sum_{\langle i,j
angle}J_{ij}S_iS_j$ $J_{ij}=\left\{egin{array}{cc}J_s & {
m on the surface}\ & J_b & {
m in the bulk}\end{array}
ight.$

Theory of surface critical phenomena

3D Ising model in a semi-infinite space

Phase diagram

H.W. Diehl, in Phase transitions and critical phenomena, vol. 10, pp. 76-260 (1986) **3**

Theory of surface critical phenomena

3D Ising model in a semi-infinite space

$$H=-\sum_{\langle i,j
angle}J_{ij}S_iS_j$$
 $J_{ij}=\left\{egin{array}{cc}J_s& ext{on the surface}\\&&&\\&J_b& ext{in the bulk}\end{array}
ight.$

Phase diagram

Critical exponents

order parameter

in the bulk

 $M_s \sim (T_c - T)^{\beta_1}$

 $M_b \sim (T_c - T)^{\beta}$

on the surface

3

correlation functions at T_c

 $h-h \sim \frac{1}{1}$

ictions at T_c

H.W. Diehl, in Phase transitions and critical phenomena, vol. 10, pp. 76-260 (1986)

Mean field for the ordinary transition

Local magnetization in the mean field approximation

1

$$M(r) = \tanh\left(T^{-1}\sum_{r'}J(r,r')M(r')\right) \qquad J(r) = \sum_{r'}J(r,r') \qquad T_c = J(z \to \infty)$$

Mean field for the ordinary transition

Local magnetization in the mean field approximation

$$M(r) = \tanh\left(T^{-1}\sum_{r'}J(r,r')M(r')\right) \qquad J(r) = \sum_{r'}J(r,r') \qquad T_c = J(z \to \infty)$$

Expanding in Taylor and assuming $J(z) = J(1 - \frac{1}{2\lambda}\delta(z))$ $\frac{1}{\lambda} \sim \frac{J_b - J_s}{J_b}$

$$\frac{1}{2}\frac{\partial^2 M(z)}{\partial z^2} = \tau M(z) + \frac{1}{3}M^3(z) \qquad \tau = \frac{(T - T_c)}{T_c} \quad \text{(reduced temperature)}$$

 $rac{\partial M(0)}{\partial z} = \lambda^{-1} M(0)$ (boundary conditions)

Mean field for the ordinary transition

Local magnetization in the mean field approximation

$$M(r) = \tanh\left(T^{-1}\sum_{r'}J(r,r')M(r')\right) \qquad J(r) = \sum_{r'}J(r,r') \qquad T_c = J(z \to \infty)$$

Expanding in Taylor and assuming $J(z) = J(1 - \frac{1}{2\lambda}\delta(z))$

$$rac{1}{\lambda}\simrac{J_b-J_s}{J_b}$$

$$\frac{1}{2} \frac{\partial^2 M(z)}{\partial z^2} = \tau M(z) + \frac{1}{3} M^3(z) \qquad \tau = \frac{(T - T_c)}{T_c} \quad \text{(reduced temperature)}$$
$$\frac{\partial M(0)}{\partial z} = \lambda^{-1} M(0) \quad \text{(boundary conditions)}$$

(poundary conditions)

Magnetization profile for $\tau < 0$

$$M(z) = (-\tau)^{1/2} f\left(\frac{z+\lambda}{\xi}\right)$$

Correlation length

$$\xi = (-\tau)^{-1/2}$$

Bulk magnetization

$$M_b \sim (-\tau)^{1/2} \quad \beta = 1/2$$

Surface magnetization

$$M_s \sim (-\tau) \qquad \beta_1 = 1$$

Correlation functions in the Gaussian approximation

Correlation function far in the bulk

$$G(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{[(\vec{x}_1 - \vec{x}_2)^2 + (z_1 - z_2)^2]^{(d-2)/2}} \qquad \qquad \mathbf{r} = (\vec{x}, z)$$

Correlation functions in the Gaussian approximation

Correlation function far in the bulk

$$G(\mathbf{r}_1, \mathbf{r}_2) = \frac{1}{[(\vec{x}_1 - \vec{x}_2)^2 + (z_1 - z_2)^2]^{(d-2)/2}} \qquad \qquad \mathbf{r} = (\vec{x}, z)$$

Correlation function close to the surface

$$\begin{aligned} \mathbf{r}_{1}, \mathbf{r}_{2} \end{pmatrix} &= \frac{1}{[(\vec{x}_{1} - \vec{x}_{2})^{2} + (z_{1} - z_{2})^{2}]^{(d-2)/2}} \\ &- \frac{1}{[(\vec{x}_{1} - \vec{x}_{2})^{2} + (z_{1} + z_{2} + 2\lambda)^{2}]^{(d-2)/2}} \\ &\mathbf{b} \cdot \mathbf{b} \sim \frac{1}{r^{d-2}} \qquad \eta = 0 \\ &\mathbf{s} \cdot \mathbf{s} \sim \frac{1}{r^{d-2}} \qquad \eta = 0 \\ &\mathbf{s} \cdot \mathbf{s} \sim \frac{1}{x^{d}} \qquad \eta_{\parallel} = 2 \\ &\mathbf{s} \cdot \mathbf{b} \sim \frac{1}{z^{d-1}} \qquad \eta_{\perp} = 1 \\ &\eta + \eta_{\parallel} = 2\eta_{\perp} \end{aligned}$$

Renormalization group approach

$$H = \int d^{d-1}r \int_0^\infty dz \left[\frac{1}{2} (\nabla \phi)^2 + \frac{\tau_0}{2} \phi^2 + \frac{g_0}{4!} \phi^4 \right]$$

Renormalization group approach

 ϕ^4 - model

$$H = \int d^{d-1}r \int_0^\infty dz \left[\frac{1}{2} (\nabla \phi)^2 + \frac{\tau_0}{2} \phi^2 + \frac{g_0}{4!} \phi^4 \right] + \frac{c_0}{2} \int d^{d-1}r \phi^2 \Big|_{z=0}$$

Robin boundary conditions

$$\partial_z \phi|_{z=0} = c_0 \phi|_{z=0}$$

Bare correlation function for g = 0

$$G_0(z, z'; q) = \frac{1}{2\kappa_0} \left[e^{-\kappa_0 |z - z'|} - \frac{c_0 - \kappa_0}{c_0 + \kappa_0} e^{-\kappa_0 (z + z')} \right] \quad \kappa_0 = \sqrt{q^2 + \tau_0}$$

Renormalization group approach

- model
$$H = \int d^{d-1}r \int_0^\infty dz \left[\frac{1}{2} (\nabla \phi)^2 + \frac{\tau_0}{2} \phi^2 + \frac{g_0}{4!} \phi^4 \right] + \frac{c_0}{2} \int d^{d-1}r \phi^2 \Big|_{z=0}$$

Robin boundary conditions

 ϕ^{4}

$$\partial_z \phi|_{z=0} = c_0 \phi|_{z=0}$$

Bare correlation function for g = 0

$$G_0(z, z'; q) = \frac{1}{2\kappa_0} \left[e^{-\kappa_0 |z - z'|} - \frac{c_0 - \kappa_0}{c_0 + \kappa_0} e^{-\kappa_0 (z + z')} \right] \quad \kappa_0 = \sqrt{q^2 + \tau_0}$$

We have to renormalize not only τ_0, g_0, ϕ but also $c_0, \phi|_{z=0}$

The renormalization group flow has 3 nontrivial fixed points $au^*, extsf{g}^*$ with

$$c^* = \infty$$
 Ordinary transition (Dirichlet boundary condition)
 $c^* = 0$ Special transition (Neumann boundary condition)
 $c \to -\infty$ Extraordinary transition (c is dangerously irrelevant)

Ordinary transition ($c^* = \infty$)

Expansion of the correlation function $G(z, z'; q) = \frac{1}{2\kappa_0} \left[e^{-\kappa_0 |z-z'|} - e^{-\kappa_0 (z+z')} \right] + \dots$

UV singularities in correlation functions can be absorbed by renormalization

 $\phi = Z_{\phi}^{1/2} \phi_R \qquad \partial_z \phi|_s = (Z_{\phi} Z_1)^{1/2} \partial_z \phi|_{sR}$ $\tau_0 = \mu^2 Z_\tau \tau + \tau_c \qquad g_0 = \mu^{4-d} Z_g u$

Renormalization conditions:

Ordinary transition ($c^* = \infty$)

Expansion of the correlation function $G(z, z'; q) = \frac{1}{2\kappa_0} \left[e^{-\kappa_0 |z-z'|} - e^{-\kappa_0 (z+z')} \right] + \dots$

UV singularities in correlation functions can be absorbed by renormalization

 $\phi = Z_{\phi}^{1/2} \phi_R \qquad \partial_z \phi|_s = (Z_{\phi} Z_1)^{1/2} \partial_z \phi|_{sR}$ $\tau_0 = \mu^2 Z_\tau \tau + \tau_c \qquad g_0 = \mu^{4-d} Z_g u$

Renormalization conditions:

$$Z_{\phi}G^{(2,0)}(z,z';q) = \text{finite}$$

$$Z_{\phi}Z_{1}^{1/2} \frac{\partial^{2}}{\partial z \partial z'}G^{(1,1)}(z,z';q)\Big|_{z=0} = \text{finite}$$

$$Z_{\phi}Z_{1}^{1/2} \frac{\partial^{2}}{\partial z \partial z'}G^{(1,1)}(z,z';q)\Big|_{z=0} = \text{finite}$$

$$Z_{1} = 1 + \frac{n+1}{3\varepsilon}g + O(\varepsilon^{2})$$

$$Z_{1} = 1 + \frac{n+1}{3\varepsilon}g + O(\varepsilon^{2})$$

$$Critical exponents$$

$$\beta = \mu \partial_{\mu} g|_{0}$$

$$\eta_{i} = \mu \partial_{\mu} \ln Z_{i}|_{0}$$

$$\eta = \eta_{\phi}(g^{*})$$

$$\eta_{\perp} = (\eta + \eta_{\parallel})/2$$

$$\eta_{\parallel} = 2 + \eta_{1}(g^{*})$$

$$\beta_{1} = \nu(d - 2 + \eta_{\parallel})/2$$

Surface critical exponents to one loop

$$\eta_{\parallel} = 2 - \frac{n+2}{n+8}\varepsilon \qquad \beta_1 = 1 - \frac{3}{2(n+8)}\varepsilon$$

Outline

- Theory of surface critical phenomena
- Bragg glass in XY model and disordered periodic elastic systems
- Anderson localization
- Non-Anderson disorder-driven quantum transition in Dirac materials

Semi-infinite Bragg glass

XY model with random fields in $d = 4 - \varepsilon$ dimension

$$H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \mathbf{S}_j - \sum_i \mathbf{h}_i \mathbf{S}_i - \mathbf{h}_1 \sum_{i \in \text{surface}} \mathbf{S}_i$$
$$|S_i|^2 = 1$$

Semi-infinite Bragg glass

XY model with random fields in $d = 4 - \varepsilon$ dimension

$$H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \mathbf{S}_j - \sum_i \mathbf{h}_i \mathbf{S}_i - \mathbf{h}_1 \sum_{i \in \text{surface}} \mathbf{S}_i$$

Replicated Hamiltonian averaged over disorder (continuum version)

D. S. Fisher, Phys. Rev. B 31, 7233 (1985)

 $|S_i|^2 = 1$

$$\mathcal{H}_n = \int_V \left\{ \frac{1}{2} \sum_{a=1}^n \left(\nabla \mathbf{s}_a(\mathbf{r}) \right)^2 - \frac{1}{2T} \sum_{a,b=1}^n \mathcal{R} \left(\mathbf{s}_a(r) \cdot \mathbf{s}_b(r) \right) \right\} - \sum_{a=1}^n \int_S \mathbf{h}_1 \cdot \mathbf{s}_a(\mathbf{x})$$

Semi-infinite Bragg glass

XY model with random fields in $d = 4 - \varepsilon$ dimension

$$H = -J \sum_{\langle i,j \rangle} \mathbf{S}_i \mathbf{S}_j - \sum_i \mathbf{h}_i \mathbf{S}_i - \mathbf{h}_1 \sum_{i \in \text{surface}} \mathbf{S}_i$$

Replicated Hamiltonian averaged over disorder (continuum version)

D. S. Fisher, Phys. Rev. B 31, 7233 (1985)

 $|S_i|^2 = 1$

$$\mathcal{H}_n = \int_V \left\{ \frac{1}{2} \sum_{a=1}^n \left(\nabla \mathbf{s}_a(\mathbf{r}) \right)^2 - \frac{1}{2T} \sum_{a,b=1}^n \mathcal{R} \left(\mathbf{s}_a(r) \cdot \mathbf{s}_b(\mathbf{r}) \right) \right\} - \sum_{a=1}^n \int_S \mathbf{h}_1 \cdot \mathbf{s}_a(\mathbf{x})$$

Quasi-long range ordered phase for d < 4 can be studied by FRGUV singularities in correlation functions can be absorbed by renormalizationPerturbative expansion $\mathring{\pi} = Z_{\pi}^{1/2} \pi, \quad \mathring{\pi}|_s = (Z_{\pi}Z_1)^{1/2} \pi|_s$

RG functions

$$\beta[R] = -\mu \partial_{\mu} R(\phi)|_{0}$$

$$\zeta_{i} = \mu \partial_{\mu} \ln Z_{i}|_{0}, \quad (i = T, \pi, 1)$$

Fixed point

$$\partial_{\ell} R(\phi) = \varepsilon R(\phi) + \frac{1}{2} [R''(\phi)]^2 - R''(0) R''(\phi)$$

D. E. Feldman, PRB 61, 382 (2000)P. Le Doussal, K.J. Wiese, PRL 96, 197202 (2006)M. Tissier, G.Tarjus, PRB 74, 214419 (2006)

Fixed point

$$\partial_{\ell} R(\phi) = \varepsilon R(\phi) + \frac{1}{2} [R''(\phi)]^2 - R''(0) R''(\phi)$$

D. E. Feldman, PRB 61, 382 (2000)P. Le Doussal, K.J. Wiese, PRL 96, 197202 (2006)M. Tissier, G.Tarjus, PRB 74, 214419 (2006)

Connected two-point function

$$\overline{\langle {f s}({f r})\cdot{f s}({f r}')
angle-\langle {f s}({f r})
angle\cdot\langle {f s}({f r}')
angle}\sim rac{1}{|{f r}-{f r}'|^{d-2+\eta}}$$

Disconnected two-point function

$$\overline{\langle {f s}({f r})
angle \cdot \langle {f s}({f r}')
angle} - \overline{\langle {f s}({f r})
angle} \cdot \overline{\langle {f s}({f r}')
angle} \sim rac{1}{|{f r}-{f r}'|^{d-4}+ar\eta}$$

Fixed point

$$\partial_{\ell} R(\phi) = \varepsilon R(\phi) + \frac{1}{2} [R''(\phi)]^2 - R''(0) R''(\phi)$$

D. E. Feldman, PRB 61, 382 (2000)P. Le Doussal, K.J. Wiese, PRL 96, 197202 (2006)M. Tissier, G.Tarjus, PRB 74, 214419 (2006)

Connected two-point function

$$\overline{\langle {f s}({f r})\cdot{f s}({f r}')
angle-\langle {f s}({f r})
angle\cdot\langle {f s}({f r}')
angle}\sim rac{1}{|{f r}-{f r}'|^{d-2+\eta}}$$

Disconnected two-point function

$$\overline{\langle {f s}({f r})
angle \cdot \langle {f s}({f r}')
angle} - \overline{\langle {f s}({f r})
angle} \cdot \overline{\langle {f s}({f r}')
angle} \sim rac{1}{|{f r}-{f r}'|^{d-4}+ar\eta}$$

$$\eta = \zeta_{\pi}^{*} - \zeta_{T}^{*}$$

$$\eta_{\perp} = \zeta_{\pi}^{*} + \zeta_{1}^{*}/2 - \zeta_{T}^{*}$$

$$\eta_{\parallel} = \zeta_{\pi}^{*} + \zeta_{1}^{*} - \zeta_{T}^{*}$$

Critical exponents for the free surface $h_1 \rightarrow 0$ (AAF, Phys. Rev. E 86, 021131 (2012))

$$\eta = \frac{\pi^2}{9}\varepsilon \qquad \qquad \eta_{\perp} = \frac{\pi^2}{6}\varepsilon \qquad \qquad \eta_{\parallel} = \frac{2\pi^2}{9}\varepsilon \\ \bar{\eta} = \left(1 + \frac{\pi^2}{9}\right)\varepsilon \qquad \qquad \bar{\eta}_{\perp} = \left(1 + \frac{\pi^2}{6}\right)\varepsilon \qquad \qquad \bar{\eta}_{\parallel} = \left(1 + \frac{2\pi^2}{9}\right)\varepsilon$$

Disordered periodic elastic systems

Hamiltonian

$$\mathcal{H} = \int d^{d-1}x \int_0^\infty z \left[\frac{c}{2}(\nabla u(\mathbf{r}))^2 + V(\mathbf{r}, u)\right]$$

c elasticity constant

V(x, u) random potential with zero mean and variance

P. Le Doussal, K.J. Wiese,P. Chauve, PRE 69, 026112 (2004)

K.J. Wiese, Rep. Prog. Phys. 85, 086502 (2022)

$$\overline{V(x,u)V(x',u')} = R(u-u')\delta^d(x-x')$$

Disordered periodic elastic systems

Hamiltonian

$$\mathcal{H} = \int d^{d-1}x \int_0^\infty z \left[\frac{c}{2} (\nabla u(\mathbf{r}))^2 + V(\mathbf{r}, u) \right]$$

c elasticity constant

V(x, u) random potential with zero mean and variance

P. Le Doussal, K.J. Wiese,P. Chauve, PRE 69, 026112 (2004)

K.J. Wiese, Rep. Prog. Phys. 85, 086502 (2022)

$$\overline{V(x,u)V(x',u')} = R(u-u')\delta^d(x-x')$$

Random Periodic (RP): R(u) is periodic

CDW, vortex lattice in type II superconductors

Disordered periodic elastic systems

Hamiltonian

$$\mathcal{H} = \int d^{d-1}x \int_0^\infty z \left[\frac{c}{2} (\nabla u(\mathbf{r}))^2 + V(\mathbf{r}, u) \right]$$

c elasticity constant

V(x, u) random potential with zero mean and variance

P. Le Doussal, K.J. Wiese,P. Chauve, PRE 69, 026112 (2004)

K.J. Wiese, Rep. Prog. Phys. 85, 086502 (2022)

$$\overline{V(x,u)V(x',u')} = R(u-u')\delta^d(x-x')$$

 $\overline{(u(\vec{x}) - u(\vec{x}'))^2} = \frac{\varepsilon}{9} \ln |\vec{x} - \vec{x}'|$

Random Periodic (RP): R(u) is periodic

CDW, vortex lattice in type II superconductors

in the bulk

 $\overline{(u(\mathbf{r}) - u(\mathbf{r}'))^2} = \frac{\varepsilon}{18} \ln|\mathbf{r} - \mathbf{r}'|$ $\overline{(u(z) - u(0))^2} = \frac{\varepsilon}{12} \ln|z|$

close to the surface

Outline

- Theory of surface critical phenomena
- Bragg glass in XY model and disordered periodic elastic systems
- Anderson localization
- Non-Anderson disorder-driven quantum transition in Dirac materials

Anderson localization transition

Single electron in a Gaussian random potential

$$\overline{V(x)} = 0$$

 $\overline{V(x)V(x')} = \Delta\delta(x - x')$

P.W. Anderson, Phys. Rev. 109, 1492 (1958)

Anderson localization transition

Single electron in a Gaussian random potential

P.W. Anderson, Phys. Rev. 109, 1492 (1958)

Anderson localization transition

Single electron in a Gaussian random potential

Field theory : Non-linear sigma model

$$S[Q] = \int d^d x \operatorname{Tr} \left[D(\nabla Q)^2 - 2i\Lambda Q \right]$$

P.W. Anderson, Phys. Rev. 109, 1492 (1958)

 $Q^2 = 1 \qquad \mathrm{Tr}Q = 0$

F. Wegner, Z. Phys. B 35, 207 (1979)

11

Multifractality

Inverse participation ratio

$$P_q = \int \mathrm{d}^d r \overline{|\psi(\mathbf{r})|^{2q}}$$

 $P_q \sim \begin{cases} L^{-d(q-1)} & \text{(extended states)} \\ L^{-d(q-1)} - \tilde{\Delta}_q & \text{(critical wave functions)} \\ L^0 & \text{(localized states)} \end{cases}$

Multifractal spectrum

 $\tilde{\Delta}_q^{(O)} = q(1-q)\varepsilon + \mathcal{O}(\varepsilon^4)$

F. Evers, A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

Multifractality

Inverse participation ratio

$$P_q = \int \mathrm{d}^d r \overline{|\psi(\mathbf{r})|^{2q}}$$

 $P_q \sim \begin{cases} L^{-d(q-1)} & \text{(extended states)} \\ L^{-d(q-1)-\tilde{\Delta}_q} & \text{(critical wave functions)} \\ L^0 & \text{(localized states)} \end{cases}$

Multifractal spectrum in the bulk What about the surface?

$$\tilde{\Delta}_q^{(O)} = q(1-q)\varepsilon + \mathcal{O}(\varepsilon^4)$$

F. Evers, A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008)

Surface multifractal spectrum
$$P_q^{(s)} = \int d^{d-1}x \overline{|\psi(x)|^{2q}} \sim L^{-d(q-1)+1-\tilde{\Delta}_q^{(s)}}$$

2D weakly localized metallic system with dimensionless conductance $g \gg 1$ shows multifractality on length scales below the localization length $~arepsilon ~e^{\pi g}$

Bulk multifractal spectrum

$$\tilde{\Delta}_q = (\pi g)^{-1} q (1-q)$$

ace multifractal spectrum
$$ilde{\Delta}_q^{(s)}=2(\pi g)^{-1}q(1-q)$$

Outline

- Theory of surface critical phenomena
- Bragg glass in XY model and disordered periodic elastic systems
- Anderson localization
- Non-Anderson disorder-driven quantum transition in Dirac materials

Disordered Dirac fermions

Hamiltonian

$$\hat{H} = -iv_F \vec{\alpha} \vec{\partial} + V(x)$$

Gaussain random potential :

$$\overline{V(x)} = 0$$
 $\overline{V(x)V(x')} = \Delta\delta(x - x')$

 $V^{(x,y,z=0)}$ - single disorder realization

Disordered Dirac fermions

Hamiltonian

$$\hat{H} = -iv_F \vec{\alpha} \vec{\partial} + V(x)$$

Gaussain random potential :

$$\overline{V(x)} = 0$$
 $\overline{V(x)V(x')} = \Delta\delta(x - x')$

Scaling arguments

Kinetic energy : $E_{typ} = \hbar v_F k$ Disorder potential : $V_{typ} \sim \sqrt{\Delta} \left(\frac{\lambda}{a_0}\right)^{-d/2}$ In the limit of zero energy ($k \rightarrow 0$) disorder is dominant for d < 2

and irrelevant for d>2

Disordered Dirac fermions

Hamiltonian

$$\hat{H} = -iv_F \vec{\alpha} \vec{\partial} + V(x)$$

Gaussain random potential :

$$\overline{V(x)} = 0$$
 $\overline{V(x)V(x')} = \Delta\delta(x - x')$

Self-consistent Born approximation

Green function $G(\vec{k},\epsilon) = \frac{1}{\epsilon - v_F \vec{\alpha} \vec{k} - \Sigma(\vec{k},\epsilon)}$ SCBA equation

$$\Sigma(\epsilon) = \Delta \int \frac{d^3k}{(2\pi)^3} \operatorname{Tr}\left[G(\vec{k},\epsilon)\right]$$

New disorder driven quantum transition \neq Anderson localization

K. Kobayashi, T. Ohtsuki, K.-I. Imura, I. F. Herbut, PRL 112, 016402 (2014)

Replicated action : Gross-Neveu model in the limit of $N \rightarrow 0$

$$S_{\mathsf{GN}} = \int d^d x \left[-i \sum_{a=1}^N \bar{\psi}_a \alpha_j \partial_j \psi_a - \frac{1}{2} \Delta \sum_{a,b=1}^N \left(\bar{\psi}_a \psi_a \right) \left(\bar{\psi}_b \psi_b \right) \right]$$

Replicated action : Gross-Neveu model in the limit of $N \rightarrow 0$

$$S_{\rm GN} = \int d^d x \left[-i \sum_{a=1}^N \bar{\psi}_a \alpha_j \partial_j \psi_a - \frac{1}{2} \Delta \sum_{a,b=1}^N \left(\bar{\psi}_a \psi_a \right) \left(\bar{\psi}_b \psi_b \right) \right]$$

Renormalization group in $d = 2 + \varepsilon$

B. Roy, S. Das Sarma, PRB 90, 241112(R) (2014)

$$-m\partial_m\tilde{\Delta} = \beta(\tilde{\Delta}) = -\varepsilon\tilde{\Delta} + 4(1-\tilde{N})\tilde{\Delta}^2 + \dots$$

RG flow

Replicated action : Gross-Neveu model in the limit of $N \rightarrow 0$

$$S_{\text{GN}} = \int d^d x \left[-i \sum_{a=1}^N \bar{\psi}_a \alpha_j \partial_j \psi_a - \frac{1}{2} \Delta \sum_{a,b=1}^N \left(\bar{\psi}_a \psi_a \right) \left(\bar{\psi}_b \psi_b \right) \right]$$

Renormalization group in $d = 2 + \varepsilon$

$$-m\partial_m\tilde{\Delta} = \beta(\tilde{\Delta}) = -\varepsilon\tilde{\Delta} + 4(1-\tilde{N})\tilde{\Delta}^2 + \dots$$

$$\Delta = \tilde{\Delta}m^{-\varepsilon} \qquad \tilde{N} = \frac{N}{2} \text{tr}\mathbb{I}$$
$$\frac{1}{\nu} = \beta'(\Delta^*)$$

Critical exponents

$$\frac{1}{\nu} = \varepsilon + \frac{\varepsilon^2}{2} + \frac{3\varepsilon^3}{8} + O\left(\varepsilon^4\right)$$
$$z = 1 + \frac{\varepsilon}{2} - \frac{\varepsilon^2}{8} + \frac{3\varepsilon^3}{32} + O(\varepsilon^4)$$
$$\eta = -\frac{\varepsilon^2}{8} + \frac{3\varepsilon^3}{16} - \frac{25\varepsilon^4}{128} + O(\varepsilon^5)$$

RG flow

Multifractal spectrum $\tilde{\Delta}_q^{\text{Dirac}} = \frac{3}{8}q(1-q)\varepsilon^2 + \mathcal{O}(\varepsilon^3)$

T. Louvet, AAF, D. Carpentier, PRB 94, 220201(R) (2016)
S.V. Syzranov, V. Gurarie, L. Radzihovsky, Ann. Phys. 373, 694 (2016)
E. Brillaux, D. Carpentier, AAF, PRB 100, 134204 (2019)

Dirac fermions in a semi-infinite system

Hamiltonian

$$\hat{H}_0 = i\tau_z \boldsymbol{\sigma} \cdot \boldsymbol{\partial} \quad z > 0 \quad \alpha_i = \tau_z \sigma_i$$

Boundary conditions

$$\left. M\psi \right|_{z=0^+} = \psi|_{z=0^+}$$

E. Witten, Three Lectures On Topological Phases Of Matter, 2018

Unitary Hermitian, no transverse current

$$\{M, \tau_z \sigma_z\} = 0$$

$$M_{\theta} = \begin{pmatrix} 0 & 0 & ie^{i\theta} & 0 \\ 0 & 0 & 0 & -ie^{-i\theta} \\ -ie^{-i\theta} & 0 & 0 & 0 \\ 0 & ie^{i\theta} & 0 & 0 \end{pmatrix}$$

Surface states

 $\hat{H}_0 \psi = \epsilon \psi \qquad \psi \sim e^{-\mu z}$

$$arepsilon = k_{||} \cos heta$$

 $\mu = k_{||} \sin heta$

O. Shtanko, L. Levitov, PNAS 115, 5908 (2018)

Disordered Dirac fermions in a semi-infinite system

Hamiltonian & boundary conditions

$$\hat{H} = -i\tau_z \boldsymbol{\sigma} \cdot \boldsymbol{\partial} + V(\boldsymbol{x}) \qquad \qquad \overline{V(\boldsymbol{x})} = 0$$
$$M_{\theta} \psi|_{z=0} = \psi|_{z=0} \qquad \qquad \overline{V(\boldsymbol{x})V(\boldsymbol{x}')} = \Delta \delta(\boldsymbol{x} - \boldsymbol{x}')$$

Disordered Dirac fermions in a semi-infinite system

Hamiltonian & boundary conditions

$$\hat{H} = -i\tau_z \boldsymbol{\sigma} \cdot \boldsymbol{\partial} + V(\boldsymbol{x}) \qquad \qquad \overline{V(\boldsymbol{x})} = 0$$
$$M_{\theta} \psi|_{z=0} = \psi|_{z=0} \qquad \qquad \overline{V(\boldsymbol{x})V(\boldsymbol{x}')} = \Delta \delta(\boldsymbol{x} - \boldsymbol{x}')$$

Local self-consistent Born approximation

$$\Sigma(\epsilon, z) = \Delta \int \frac{d^2k}{(2\pi)^2} \operatorname{Tr} \left[G(\vec{k}, z, z, \epsilon) \right]$$

Local DOS profile $ho(\epsilon=0,z)$

Phase diagram in the presence of bulk disorder

E. Brillaux, AAF, PRB 100, 103, 081405 (2021) 17

Special transtion $(\theta = 0)$: renormalization group

Action for the system with a surface

$$S = -i \int_{z>0} d^d x \, ar{\psi}_a(x) lpha_\mu \partial_\mu \psi_a(x) - rac{\Delta}{2} \int_{z>0} d^d x \, ar{\psi}_a(x) \psi_a(x) ar{\psi}_b(x) \psi_b(x)
onumber \ + i \int d^{d-1} r ar{\psi}_a(ec{r}) lpha_z M \psi_a(ec{r})$$

Special transtion $(\theta = 0)$: renormalization group

Action for the system with a surface

$$S = -i \int_{z>0} d^d x \, ar{\psi}_a(x) lpha_\mu \partial_\mu \psi_a(x) - rac{\Delta}{2} \int_{z>0} d^d x \, ar{\psi}_a(x) \psi_a(x) ar{\psi}_b(x) \psi_b(x)
onumber \ + i \int d^{d-1} r ar{\psi}_a(ec{r}) lpha_z M \psi_a(ec{r})$$

Renormalization

$$\tilde{\psi} = Z_{\psi}^{1/2} \psi, \quad \tilde{\psi}_s = Z_{\psi_s}^{1/2} \psi_s, \quad \tilde{O} = Z_{\omega} Z_{\psi}^{-1} O, \quad \tilde{O}_s = Z_{O_s} Z_{\psi_s}^{-1} O_s, \quad \tilde{\Delta} = \frac{2\mu^{-\varepsilon}}{K_d} \frac{Z_{\Delta}}{Z_{\psi}^2} \Delta$$

$$O(x) := \bar{\psi}(x) \psi(x), \quad O_s(r) := \bar{\psi}_s(r) \psi_s(r)$$

Z-factors from minimal subtraction scheme

$$Z_{\psi} = 1 - \frac{\Delta^2}{\varepsilon}$$
$$Z_{\omega} = 1 + \frac{2\Delta}{\varepsilon} + \frac{6\Delta^2}{\varepsilon^2}$$
$$Z_{\Delta} = 1 + \frac{4\Delta}{\varepsilon} + \Delta^2 \left(\frac{16}{\varepsilon^2} + \frac{2}{\varepsilon}\right)$$

$$Z_{\psi_s} = 1 - \frac{2\Delta}{\varepsilon} + O(\Delta^2)$$
$$Z_{O_s} = 1 - \frac{6\Delta}{\varepsilon} + O(\Delta^2)$$

E. Brillaux, AAF, I. Gruzberg, PRB 109, 174204 (2024)

Special transtion: renormalization group

RG functions

1

$$\beta(\Delta) = -\mu \frac{\partial \Delta}{\partial \mu} \bigg|_{\mathring{\Delta}}, \quad \eta_i(\Delta) = -\beta(\Delta) \frac{\partial \ln Z_i}{\partial \Delta}, \quad (i = \psi, \psi_s, \omega, O_s), \quad \gamma(\Delta) = \eta_\omega(\Delta) - \eta_\psi(\Delta)$$

Critical exponents at fixed point $\beta(\Delta^*) = 0$

$$egin{split} rac{1}{
u} &= eta'(\Delta^*), \; z = 1 + \gamma(\Delta^*), \; \eta = \eta_\psi(\Delta^*), \; \eta_{\parallel} = \eta_{\psi_s}(\Delta^*) \ eta &=
u(d-z), \; \; eta_s =
uigg(d-1-\eta_{O_s}(\Delta^*)+\eta_{\psi_s}(\Delta^*)igg) \end{split}$$

Two point surface functions

$$G(r_1, r_2) = \frac{i}{S_d} (1 + M_0) \frac{\vec{\alpha} \cdot (\vec{r}_1 - \vec{r}_2)}{|\vec{r}_1 - \vec{r}_2|^{d + \eta_{\parallel}}}$$
$$G(0, z) = -\frac{i}{S_d} (1 + M_0) \frac{\alpha_z}{z^{d - 1 + \eta_{\perp}}}$$

Surface DOS

$$ho_s \sim |\Delta - \Delta_c|^{eta_s}$$

 $\eta = -\frac{\varepsilon^2}{8} + O(\varepsilon^3)$ $\eta_{\parallel} = -\frac{\varepsilon}{2} + O(\varepsilon^2)$ $\eta_{\perp} = \frac{1}{2}(\eta + \eta_{\parallel})$ $\frac{\beta_s}{\beta} = 1 + \frac{3}{2}\varepsilon + O(\varepsilon^2)$

Thank you for your attention!